R . D . Carmichael ANALYTIC FUNCTIONS , CAUCHY KERNEL , AND CAUCHY INTEGRAL IN TUBES

نویسنده

  • R. D. Carmichael
چکیده

Analytic functions in tubes in association with ultradistributional boundary values are analyzed. Conditions are stated on the analytic functions satisfying a certain norm growth which force the functions to be in the Hardy space H2 . Properties of the Cauchy kernel and Cauchy integral are obtained which extend results obtained previously by the author and collaborators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An effective method for approximating the solution of singular integral equations with Cauchy kernel type

In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...

متن کامل

Cauchy-green Type Formulae in Clifford Analysis

A Cauchy integral formula is constructed for solutions to the polynomial Dirac equation (Dk+Yfcrn~JQ bmDm)f = 0 , where each bm is a complex number, D is the Dirac operator in R" , and f is defined on a domain in R" and takes values in a complex Clifford algebra. Some basic properties for the solutions to this equation, arising from the integral formula, are described, including an approximatio...

متن کامل

Cauchy Kernels for some Conformally Flat Manifolds

Here we will consider examples of conformally flat manifolds that are conformally equivalent to open subsets of the sphere S. For such manifolds we shall introduce a Cauchy kernel and Cauchy integral formula for sections taking values in a spinor bundle and annihilated by a Dirac operator, or generalized Cauchy-Riemann operator. Basic properties of this kernel are examined, in particular we exa...

متن کامل

A Determinant of the Chudnovskys Generalizing the Elliptic Frobenius-Stickelberger-Cauchy Determinantal Identity

D.V. Chudnovsky and G.V. Chudnovsky [CH] introduced a generalization of the FrobeniusStickelberger determinantal identity involving elliptic functions that generalize the Cauchy determinant. The purpose of this note is to provide a simple essentially non-analytic proof of this evaluation. This method of proof is inspired by D. Zeilberger’s creative application in [Z1]. AMS Subject Classificatio...

متن کامل

Majorization of Singular Integral Operators with Cauchy Kernel on L

Let a, b, c and d be functions in L = L(T, dθ/2π), where T denotes the unit circle. Let P denote the set of all trigonometric polynomials. Suppose the singular integral operators A and B are defined by A = aP + bQ and B = cP + dQ on P, where P is an analytic projection and Q = I − P is a co-analytic projection. In this paper, we use the Helson–Szegő type set (HS)(r) to establish the condition o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012